Лабораторная работа. Реализация локального анализатора коммутируемых портов

Топология

Таблица адресации

Устройство	Интерфейс	IP-адрес	Маска подсети	Шлюз по умолчанию
R1	G0/1	192.168.1.1	255.255.255.0	—
S1	VLAN 1	192.168.1.2	255.255.255.0	192.168.1.1
S3	VLAN 1	192.168.1.3	255.255.255.0	192.168.1.1
PC-A	NIC	192.168.1.254	255.255.255.0	192.168.1.1
PC-C	NIC	192.168.1.10	255.255.255.0	192.168.1.1

Задачи

Часть 1. Построение сети и проверка соединения

Часть 2. Настройка локального анализатора коммутируемых портов и сбор копируемого трафика с помощью ПО Wireshark

Общие сведения/сценарий

Как сетевой администратор, вы хотите анализировать входящий и исходящий трафик локальной сети. Для этого вы настроите зеркалирование портов на коммутационном порте, подключенном к маршрутизатору, и зеркально скопируете весь трафик на другой коммутационный порт. Цель состоит в отправке зеркалированного трафика в систему обнаружения вторжений (IDS) для анализа. В этой первоначальной реализации вы будете отправлять весь зеркалированный трафик на ПК, который будет перехватывать трафик для анализа, используя программу прослушивания портов. Для настройки зеркалирования портов будет использоваться функция анализатора коммутируемых портов (SPAN) на коммутаторе Cisco. Анализатор коммутируемых портов — это тип зеркалирования портов, в котором копии кадров, поступающих на порт, отправляются на другой порт того же коммутатора. Очень часто можно найти устройство, на котором работает анализатор трафика пакетов или система обнаружения вторжений (IDS), подключенные к зеркалированному порту.

Примечание. В практических лабораторных работах ССNA используются маршрутизаторы с интегрированными сетевыми сервисами (ISR) Cisco 1941 с операционной системой Cisco IOS версии 15.4(3) (образ universalk9). Также используются коммутаторы Cisco Catalyst 2960 с операционной системой Cisco IOS версии 15.0(2) (образ lanbasek9). Допускается использование коммутаторов и маршрутизаторов других моделей, а также других версий операционной системы Cisco IOS. В зависимости от модели устройства и версии Cisco IOS доступные команды и результаты их выполнения могут отличаться от тех, которые показаны в лабораторных работах. Точные идентификаторы интерфейсов см. в сводной таблице по интерфейсам маршрутизаторов в конце лабораторной работы.

Примечание. Убедитесь, что у всех маршрутизаторов и коммутаторов была удалена начальная конфигурация. Если вы не уверены, обратитесь к инструктору.

Необходимые ресурсы

- 1 маршрутизатор (Cisco 1941 с операционной системой Cisco IOS 15.4(3) (универсальный образ) или аналогичная модель)
- 2 коммутатора (Cisco 2960 с операционной системой Cisco IOS 15.0(2) (образ lanbasek9) или аналогичная модель)
- 2 ПК (Windows и программа эмуляции терминала, такая как Tera Term)
- Консольные кабели для настройки устройств Cisco IOS через консольные порты
- кабели Ethernet и последовательные кабели в соответствии с топологией.

Часть 1: Построение сети и проверка связи

В первой части вам предстоит настроить топологию сети и выполнить базовую настройку, например, IP-адреса интерфейсов, статическую маршрутизацию, доступ к устройствам и пароли.

Шаг 1: Создайте сеть согласно топологии.

Подключите устройства, как показано в топологии, и подсоедините необходимые кабели.

Шаг 2: Настройте узлы ПК.

Шаг 3: Выполните инициализацию и перезагрузку маршрутизатора и коммутаторов.

Шаг 4: Настройте базовые параметры этого маршрутизатора.

- а. Отключите DNS-поиск.
- b. Присвойте имена устройствам в соответствии с топологией.
- с. Настройте IP-адрес для маршрутизатора, указанный в таблице адресации.
- d. Назначьте class в качестве зашифрованного пароля доступа к привилегированному режиму EXEC.
- е. Назначьте cisco в качестве пароля консоли и VTY и включите запрос пароля при подключении.
- f. Установите режим transport input telnet для линий VTY.

- g. Настройте logging synchronous, чтобы сообщения от консоли не могли прерывать ввод команд.
- h. Скопируйте текущую конфигурацию в файл загрузочной конфигурации.

Шаг 5: Настройте базовые параметры каждого коммутатора.

- а. Отключите DNS-поиск.
- b. Присвойте имена устройствам в соответствии с топологией.
- с. Назначьте class в качестве зашифрованного пароля доступа к привилегированному режиму EXEC.
- d. Настройте IP-адреса для коммутаторов, указанных в таблице адресации.
- е. На каждом коммутаторе настройте шлюз по умолчанию.
- f. Назначьте cisco в качестве пароля консоли и VTY и включите запрос пароля при подключении.
- g. Настройте logging synchronous, чтобы сообщения от консоли не могли прерывать ввод команд.
- h. Скопируйте текущую конфигурацию в файл загрузочной конфигурации.

Шаг 6: Проверьте подключение.

a. Необходимо получать ответ на ping-запросы с компьютера PC-A от каждого интерфейса маршрутизаторов R1, S1 и S3, а также от компьютера PC-C. Удалось ли получить все ответы?

Если команды ping завершились неудачно и связь установить не удалось, исправьте ошибки в основных настройках устройства.

b. Необходимо получать ответ на ping-запросы с компьютера PC-C от каждого интерфейса маршрутизаторов R1, S1 и S3, а также от компьютера PC-A. Удалось ли получить все ответы?

Если команды ping завершились неудачно и связь установить не удалось, исправьте ошибки в основных настройках устройства.

Часть 2: Настройка локального анализатора коммутируемых портов и сбор копируемого трафика с помощью ПО Wireshark

Для настройки локального анализатора коммутируемых портов необходимо настроить один или несколько исходных зеркалированных портов и один зеркалированный порт назначения для копирования или зеркалирования трафика. Исходные порты анализатора коммутируемых портов можно настроить для мониторинга трафика на входе, на выходе или в обоих направлениях (по умолчанию).

Исходный порт анализатора коммутируемых портов необходимо настроить на порту, который подключается к маршрутизатору через порт F0/5 коммутатора S1. Таким образом будет контролироваться весь входящий и исходящий трафик локальной сети. Порт назначения анализатора коммутируемых портов будет настроен на порту F0/6 коммутатора S1, подключенном к узлу PC-A, на котором работает Wireshark.

Шаг 1: Настройте анализатор коммутируемых портов на коммутаторе S1.

 Подключитесь с консоли к S1 и настройте исходный и целевой порты мониторинга на коммутаторе S1. Теперь весь входящий и исходящий трафик на порту F0/5 будет копироваться и перенаправляться на порт F0/6.

```
S1(config)# monitor session 1 source interface f0/5
S1(config)# monitor session 1 destination interface f0/6
```

Шаг 2: Запустите сбор трафика с помощью ПО Wireshark на компьютере РС-А.

a. Откройте ПО Wireshark на компьютере PC-A, настройте для интерфейса сбора трафика подключение по локальной сети и щелкните **Start** (Начать).

Шаг 3: Подключитесь к маршрутизатору R1 по Telnet и создайте трафик ICMP в локальной сети.

а. Установите подключение по Telnet от S1 к R1.

```
S1# Telnet 192.168.1.1
   Trying 192.168.1.1. . . Open
   User Access Verification
   Password:
   R1>
b. В привилегированном режиме отправьте эхо-запросы к PC-C, S1 и S3.
   R1> enable
   Password:
   R1# ping 192.168.1.10
   Type escape sequence to abort.
   Sending 5, 100-byte ICMP Echos to 192.168.1.10, timeout is 2 seconds:
   11111
   Success rate is 100 percent (5/5), round-trip min/avg/max = 1/1/4 ms
   R1# ping 192.168.1.2
   <Выходные данные опущены>
   R1# ping 192.168.1.3
   <Выходные данные опущены>
```

Шаг 4: Остановите сбор трафика с помощью Wireshark на РС-А и выполните фильтрацию трафика ICMP.

а. Вернитесь на компьютер РС-А и остановите захват трафика программой Wireshark.

🧟 C	apturing from l	Local Area Connect	tion [Wireshark 1	12.6 (v1.12.6-0-gee1	fce6 from master-	1.12)]	
Eile	<u>cait V</u> iew	<u>o</u> Capture <u>A</u>	nalyze <u>S</u> tatistics	Telephony <u>T</u> ools	Internals <u>H</u> elp		
6	o 🗶 🗨		K 22 9, 4	🛸 🤪 ዥ 👱		् 🔍 🖭	i 🖗 🖻 🕵 (
Filte	er:	Stop the running l	l <mark>ive capture</mark>		Expression	Clear Apply	/ Save
No.	Time	Sour	ce	Destination		Protocol Le	ength Info
	96 20.982	328000 192	.168.1.1	192.168	.1.2	TCP	60 23→35389
	97 20.983	065000 192	.168.1.2	192.168	.1.1	TELNET	60 Telnet D
	98 20.983	433000 192	.168.1.1	192.168	.1.2	TELNET	60 Telnet C
	99 21.178	308000 192	.168.1.2	192.168	.1.1	TCP	60 35389→23
	100 21.898	020000 192	.168.1.2	192.168	.1.1	TELNET	60 Telnet D
	101 21.898	441000 192	.168.1.1	192.168	.1.2	TELNET	60 Telnet D
	102 21.901	144000 192	.168.1.1	192.168	.1.2	TELNET	154 Telnet C
	103 21.901	166000 192	.168.1.1	192.168	.1.2	TELNET	60 Telnet D

b. Отфильтруйте ICMP-пакеты в трафике, собранном Wireshark.

Capturing from Local Area Connection [Wireshark 1.12.6 (v1.12.6-0-gee1fce6 from master-1.12)]							
<u>File Edit V</u> iew <u>G</u> o	<u>Capture</u> <u>A</u> nalyze <u>S</u> tatistics	Telephon <u>y T</u> ools <u>I</u> nternals <u>H</u> el	lp				
		• • 4 7 4 1	Ð, Q, 🛛 🧮 📔	i 🖻 💀 💥 💢			
Filter: icmp		 Expression 	(lear Apply Sav	e			
No. 10		1.1	ICMP	by this filter string to the display			
1(1.2	TELNET 60	Telnet Data			
107 21.903464	4000 192.168.1.1	192.168.1.3	ICMP 114	Echo (ping) request			
108 21, 904 949	9000 192.168.1.3	192.168.1.1	ICMP 114	Echo (ping) reply			
109 21.905260	0000 192.168.1.1	192.168.1.2	TELNET 60	Telhet Data			
110 21.90528	2000 192.168.1.1	192.108.1.3	ICMP 114	Echo (ping) request			
111 21. 90/20	3000 192.168.1.3	192.168.1.1	ICMP 114	Echo (ping) reply			
112 21.90/5/	3000 192.168.1.1	192.168.1.2	TELNET 60	Telnet Data			
113 21.90/59	5000 192.168.1.1	192.168.1.3	ICMP 114	Echo (ping) request			
114 21.90909	3000 192.168.1.2	192.168.1.1	TCP 60	35389→23 [ACK] Seq=34			
115 21.90933	8000 192.168.1.3	192.168.1.1	ICMP 114	Echo (ping) reply			
116 21.909650	6000 192.168.1.1	192.168.1.2	TELNET 60	Telnet Data			
11/ 21.909730	0000 192.168.1.1	192.168.1.3	ICMP 114	Ecno (ping) request			
118 21.91168	5000 192.168.1.3	192.168.1.1	ICMP 114	Echo (ping) reply			
119 21.911949	9000 192.168.1.1	192.168.1.2	TELNET 60	Telnet Data			

_												
Capturing from Local Area Connection [Wireshark 1.12.6 (v1.12.6-0-gee1fce6 from master-1.12)]												
<u>F</u> ile	<u>E</u> dit <u>V</u> iew	<u>G</u> o <u>C</u> apture	e <u>A</u> nalyze	Statistics	Felephon <u>y</u>	<u>T</u> ools <u>I</u> nter	nals <u>H</u> elp					
0	•	1 🕒	X2	୍ 🐗	🗼 🌍 🕇	L 🗐		୍ଷ୍	m 🕅		<mark>™</mark> %	Ø
Filte	r: icmp					• E	Expression	Clear Ap	ply Save	2		
No.	Time		Source		Des	tination		Protocol	Length	Info		
	26 10.240	016000	192.168.1	1	19	2.168.1.1	0	ICMP	114	Echo	(ping)	request
	29 10.241	021000	192.168.1	.10	19	2.168.1.1		ICMP	114	Echo	(ping)	reply
	31 10.241	384000	192.168.1	1	19	2.168.1.1	0	ICMP	114	Echo	(ping)	request
	32 10.241	833000	192.168.1	10	19	2.168.1.1		ICMP	114	Echo	(ping)	reply
	34 10.242	139000	192.168.1	1	19	2.168.1.1	0	ICMP	114	Echo	(ping)	request
	35 10.242	581000	192.168.1	10	19	2.168.1.1		ICMP	114	Echo	(ping)	reply
	37 10.242	891000	192.168.1	1	19	2.168.1.1	0	ICMP	114	Echo	(ping)	request
	38 10.243	356000	192.168.1	10	19	2.168.1.1		ICMP	114	Echo	(ping)	reply
	40 10.243	645000	192.168.1	1	19	2.168.1.1	0	ICMP	114	Echo	(ping)	request
	41 10.244	088000	192.168.1	10	19	2.168.1.1		ICMP	114	Echo	(ping)	reply
	64 15.097	278000	192.168.1	1	19	2.168.1.2		ICMP	114	Echo	(ping)	request
	65 15.100	126000	192.168.1	2	19	2.168.1.1		ICMP	114	Echo	(ping)	reply
	67 15.100	518000	192.168.1	1	19	2.168.1.2		ICMP	114	Echo	(ping)	request
	68 15.102	406000	192.168.1	2	19	2.168.1.1		ICMP	114	Echo	(ping)	reply
	70 15.102	742000	192.168.1	1	19	2.168.1.2		ICMP	114	Echo	(ping)	request
	71 15.104	717000	192.168.1	2	19	2.168.1.1		ICMP	114	Echo	(ping)	reply
	73 15.105	053000	192.168.1	1	19	2.168.1.2		ICMP	114	Echo	(ping)	request
	74 15.107	079000	192.168.1	2	19	2.168.1.1		ICMP	114	Echo	(ping)	reply
	76 15.107	415000	192.168.1	1	19	2.168.1.2		ICMP	114	Echo	(ping)	request
	77 15.109	430000	192.168.1	2	19	2.168.1.1		ICMP	114	Echo	(ping)	reply
	104 21.901	236000	192.168.1	1	19	2.168.1.3		ICMP	114	Echo	(ping)	request
	105 21.903	040000	192.168.1	3	19	2.168.1.1		ICMP	114	Echo	(ping)	reply
	107 21.903	464000	192.168.1	1	19	2.168.1.3		ICMP	114	Echo	(ping)	request
	108 21,904	949000	192.168.1	. 3	19	2.168.1.1		ICMP	114	Echo	(ping)	reply

с. Изучите отфильтрованные ICMP-пакеты в трафике, собранном Wireshark.

- d. Были ли ping-запросы от R1 к PC-C, S1 и S3 успешно скопированы и перенаправлены с порта F0/6 на PC-A?
- е. Выполнялся ли мониторинг и копирование трафика в обоих направлениях?

Вопросы для повторения

В данном сценарии не лучше ли было использовать систему обнаружения (IDS) или предотвращения (IPS) вторжений вместо PC-A и анализатора трафика пакетов?

Сводка по интерфейсам маршрутизаторов							
Модель маршрутизатора	Интерфейс Ethernet № 1	Интерфейс Ethernet № 2	Последовательный интерфейс № 1	Последовательный интерфейс № 2			
1800	Fast Ethernet 0/0 (F0/0)	Fast Ethernet 0/1 (F0/1)	Serial 0/0/0 (S0/0/0)	Serial 0/0/1 (S0/0/1)			
1900	Gigabit Ethernet 0/0 (G0/0)	Gigabit Ethernet 0/1 (G0/1)	Serial 0/0/0 (S0/0/0)	Serial 0/0/1 (S0/0/1)			
2801	Fast Ethernet 0/0 (F0/0)	Fast Ethernet 0/1 (F0/1)	Serial 0/1/0 (S0/1/0)	Serial 0/1/1 (S0/1/1)			
2811	Fast Ethernet 0/0 (F0/0)	Fast Ethernet 0/1 (F0/1)	Serial 0/0/0 (S0/0/0)	Serial 0/0/1 (S0/0/1)			
2900	Gigabit Ethernet 0/0 (G0/0)	Gigabit Ethernet 0/1 (G0/1)	Serial 0/0/0 (S0/0/0)	Serial 0/0/1 (S0/0/1)			

Сводная таблица по интерфейсам маршрутизаторов

Примечание. Чтобы определить конфигурацию маршрутизатора, можно посмотреть на интерфейсы и установить тип маршрутизатора и количество его интерфейсов. Перечислить все комбинации конфигураций для каждого класса маршрутизаторов невозможно. Эта таблица содержит идентификаторы для возможных комбинаций интерфейсов Ethernet и последовательных интерфейсов на устройстве. Другие типы интерфейсов в таблице не представлены, хотя они могут присутствовать в данном конкретном маршрутизаторе. В качестве примера можно привести интерфейс ISDN BRI. Строка в скобках — это официальное сокращение, которое можно использовать в командах Cisco IOS для обозначения интерфейса.